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Scale-Aware Graph Convolutional Network with
Part-Level Refinement for Skeleton-Based Human
Action Recognition
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Abstract—Graph Convolutional Networks (GCNs) have been
widely used in skeleton-based human action recognition and
have achieved promising results. However, current GCN-based
methods are limited by their inability to refine semantic-guided
joint relations and perform adaptive multi-scale analysis. These
limitations impair their performance, particularly for analogical
actions involving the interaction of the same body parts (e.g.,
drinking water and eating) as well as deficient actions with
limited spatial-temporal information (e.g., subtle action writing
and transient action sneezing). To solve these problems, we
propose Part-level Refined Spatial Graph Convolution (PR-SGC)
and Scale-aware Temporal Graph Convolution (Sa-TGC) for
optimal action representation. The PR-SGC divides the skeleton
into body parts and embeds this high-level semantics to refine the
physical adjacency matrix. The Sa-TGC leverages the dynamic
scale-aware mechanism to extract context-dependent multi-scale
features. On this basis, we develop a novel Scale-aware Graph
Convolutional Network with Part-level Refinement (SaPR-GCN),
which is on par with state-of-the-art benchmarks on NTU
RGB+D 60, NTU RGB+D 120, and NW-UCLA datasets.

Index Terms—Action Recognition, Graph Convolutional Net-
works, Spatiotemporal Modeling, Multi-scale Analysis.

I. INTRODUCTION

UMAN action recognition is a fundamental topic in
computer vision with broad applications, including video
surveillance [1] and human-computer interaction [2]. Human
actions can be described by multimodal data, such as RGB
videos, depth videos, and skeleton sequences. Due to the
compactness of representation and robustness to environmental
variations, skeleton-based human action recognition has at-
tracted increasing attention.
In essence, skeleton sequences consist of isomorphic spatial-
temporal graphs, where bones are considered spatial edges
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Fig. 1. Examples of analogical and deficient actions. Analogical actions de-
note similar actions involving interactions between the same body parts, e.g.,
drinking water and eating meals cover the resemble interaction trajectories
of hands and head. The extracted features are closely distributed in feature
space. Besides, deficient actions refer to the actions that provide insufficient
dynamic information, including continuous actions with subtle movements,
e.g., writing, and transient actions with short durations, e.g., sneezing. The
above skeleton sequences are derived from NTU RGB+D 60 dataset.

while the identical joints between two adjacent frames are
connected as temporal edges [3]. Therefore, many researchers
have employed Graph Convolutional Networks (GCNs) in
skeleton-based action recognition and achieved promising re-
sults. However, existing GCN-based methods still have chal-
lenges in recognizing some specific categories of actions,
which we defined as analogical actions and deficient actions,
as shown in Fig. 1. Specifically, analogical actions denote
the action pairs with high similarity which often involve
interactions between the same body parts. As shown in Fig.
1(a), drinking water and eating meals cover the resemble in-
teraction trajectories of hands and head. The extracted features
are closely distributed in high-dimensional space, and thus
their inter-class difference is too small to distinguish. Besides,
deficient actions refer to the actions that provide insufficient
dynamic information for recognition, including continuous
actions with subtle movements, e.g., writing, and transient
actions with short durations, e.g., sneezing. As shown in Fig.
1(b), writing only has slight spatial variation of hands, and
sneezing involves wide range changes in multiple parts but has
a shorter time interval. The essential nature of these actions

Copyright ©2023 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must
be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.
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Fig. 2. The pipeline of SaPR-GCN. The data preprocessing module first transforms the input skeleton sequence into multi-stream data. Then, four separate
models with identical architecture are trained using joint, bone, joint motion, and bone motion, respectively. The softmax scores of multiple streams are
ensembled to obtain the final results. The SaPR-GCN is the stack of PR-SGC and Sa-TGC blocks for effective spatial-temporal representations. Specifically,
PR-SGC exploits body part-guided constraints for mining spatial patterns, and Sa-TGC generates multi-scale temporal dynamics in an adaptive context-

dependent manner.

requires the model to extract more discriminative features for
recognition. After in-depth analysis, we find that the existing
GCN-based method is mainly composed of a stack of layers
included a Spatial Graph Convolution (SGC) and a Temporal
Graph Convolution module (TGC). Based on this, we explore
why it is difficult for existing methods to distinguish the above
actions from spatial and temporal aspects.

Firstly, the SGC is an extension of the convolution on
images [4]. The difference is that the image has a regular
grid structure, i.e., the relative position of pixels is natural
and static, while that in the graph structure is indeterminate.
Essentially, the joint relationship in the graph is controlled by
the adjacency matrix. Similar to the pixel arrangement is sig-
nificant to image convolution, the adjacency matrix is critical
to graph convolution, which determines the graph structure and
feature aggregation during graph convolution. To optimize the
SGC, Yan et al. [5] utilized the fixed graph for spatial-temporal
modeling, but they failed to capture long-range dependencies,
e.g., the information between the two hands is blocked. Shi
et al. [3] introduced two supplementary graphs, the structure
of which are learned by trainable parameters. Wu et al.
[6] constructed multi-directional graphs and global learnable
matrices to mine latent joint relationships, including inward,
outward, and undirected graphs. Huang et al. [7] proposed
a high-resolution skeleton graph (HRG) by creating virtual
joints between each pair of physically connected joints and
fully connecting every joint as the spatial graph. Despite this,
the topology is not optimal and lacks interpretability without
physical constraints such as human body parts. Huang et al. [8]
devised the part relation block with graph pooling operators
to obtain the body parts relationship. However, the pooling
function neglected the correlation diversity of joints in the
same part. To solve these problems, we propose the Part-level
Refined Spatial Graph Convolution (PR-SGC) to mine intrinsic

joint relations guided by body part semantics for meticulous
topology.

Secondly, as depicted in Fig. 1(b), writing has less spatial
variation and requires a more fine-grained feature description
while sneezing has a shorter duration and requires capturing a
wide range of motion patterns. Therefore, multi-scale analysis
is vital to excavate exhaustive information about these actions.
Peng et al. [9] applied multi-order polynomials to involve
richer connections between multi-distant joins in the spatial
dimension, ignoring multi-range temporal dependencies. Chen
et al. [10] proposed MST-GCN for multi-scale spatio-temporal
modeling. Nevertheless, the temporal scale is limited by
the distance factor in the spatial dimension. Liu et al. [11]
investigated a unified spatial-temporal operator called MS-
G3D with a multi-branch structure. However, the scale is
inflexible due to the fixed dilation of temporal convolutions.
Due to the lack of an adaptive scale analysis mechanism
in the TGC, existing GCNs fail to capture action-specific
granularity features, which impair their robustness and gen-
erality. Motivated by this, we aim to generate multi-scale
spatio-temporal features adaptively and design the Scale-aware
Temporal Graph Convolution (Sa-TGC) module.

By coupling the above efforts, we build the Scale-aware
Graph Convolutional Network with Part-level Refinement
Topology (SaPR-GCN), as shown in Fig. 2, which is compe-
tent for recognizing analogical and deficient actions. To sum
up, our contributions are as follows:

e We devise PR-SGC that mines intrinsic and meticulous
relations between joints guided by body part semantics
to extract more fine-grained features.

o We investigate Sa-TGC to enrich the receptive fields
of GCN, which generates multi-scale context-dependent
features adaptively.

« Taking advantage of PR-SGC and Sa-TGC, we propose a
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novel learning framework SaPR-GCN, which can extract
more discriminative features, especially for analogical
and deficient actions.

e We present some variants of SaPR-GCN, proving that
PR-SGC and Sa-TGC can be ported to other GCN-based
approachs as separate modules.

o The extensive experimental results and analyses of three
public datasets: NTU RGB+D 60, NTU RGB+D 120, and
NW-UCLA, show that our model is more interpretable
and superior to state-of-the-art methods.

II. RELATED WORK

Topology optimization methods. GCNs have been widely
adopted in skeleton-based action recognition to explore a
more effective representation of human behaviors. In GCN-
based methods, the human skeleton is represented as a graph
where the joints are nodes, and the bones are edges. The
topology of joints reflected by the adjacency matrix is pivotal
in graph convolution, which controls the received fields of
graph convolution layers. Yan et al. [5] first constructed the
spatial-temporal graph with physical and inter-frame connec-
tions between joints for action modeling, laying the founda-
tion for GCN-based methods. Shi et al. [12] designed the
directed acyclic GCN, in which incoming and outgoing edges
connect vertexes. However, due to the fixed topology, these
predefined models lack generality to new samples. Shi et al.
[3] proposed a two-stream structure called 2s-AGCN, which
embedded the Gaussian function to calculate the similarity of
the two vertexes and added learnable parameters to learn the
dependency strength between joints. Song et al. [13] focused
on the activation degree of joints, which is measured by the
class activation maps (CAM). Li et al. [14] introduced the A-
link inference module to capture action-specific dependencies
for topology optimization. Nevertheless, these approaches lack
semantic guidance, are challenging to exploit nuanced depen-
dencies fully, and cannot be well interpreted.

Body part-based methods. Li et al. [15] focused on the
inter-body semantics of the skeletons in two-person interactive
actions and constructed a unified graph through edge labeling
strategies. However, this coarse-grained relationship cannot
fully mine the joint relationship in the single skeleton. Thakkar
et al. [16] divided the human skeleton into four subgraphs
and proposed PB-GCN to embed part semantics. However,
they impaired the information aggregated across body parts.
Song et al. [17] focused on discovering the significant parts
and investigated the ResGCN with attention mechanisms,
yet the global information is diminished according to the
hierarchical structure. Huang et al. [8] learned high-level
relations between body parts and highlighted the vital parts
using graph pooling and unpooling operations. However, the
pooling function neglected the correlation diversity of joints
in the same part. Generally, these approaches are disabled to
capture elaborate topology, and the performance on challeng-
ing actions is unideal consequently. To solve these problems,
we propose the part-level refined spatial graph convolution to
mine intrinsic joint relations meticulously with the aid of body
part semantics. Note that all these part-based models aim to

extract features from body parts individually. In contrast, our
work focuses on learning and transferring part-level potential
relations into joints to refine the topology.

Multi-scale analysis methods. To extract more discrim-
inative features, SEFN [18] proposed the Multi-perspective
Attention Fusion Module (MPAFM), which fuses the infor-
mation from the spatial, channel, and temporal branches by
attention mechanism. However, only extracting the single-scale
feature fails to capture discriminative action patterns because
human movements involve multi-range concurrency. AS-GCN
[14] and NAS-GCN [9] tried to capture multi-scale features
from non-local neighbors via higher-order polynomials of the
adjacency matrix. Generally, these formulations suffered from
the biased weighting problem due to self-connection. Liu et al.
[11] proposed MS-G3D to disentangle redundant dependencies
and first applied differentiable dilated convolutions for multi-
scale temporal dynamics. Chen et al. [10] investigated the
MS-GC and MT-GC modules for multi-scale spatial-temporal
modeling, but the temporal scale is mainly implemented by the
scale factor in MS-GC. CTR-GCN [19] adopted the multi-
branch structure with different dilations like MS-G3D and
achieved better performance. However, the above methods
extracted multi-scale features through predefined topological
structures or fixed dilations. Due to the inflexibility of scale,
they failed to extract discriminative features for analogical
and deficient actions. In light of these limitations, we propose
the scale-aware mechanism to generate multi-scale features
adaptively.

III. METHODS

The pipeline of 4-stream SaPR-GCN is depicted in Fig. 2.
In this section, we first introduce the GCNs (Sec. III.A) and
derive the generalized part-based graph convolution operators
(Sec. III.B). Then, we present the basic two modules PR-SGC
(Sec. III.C) and Sa-TGC (Sec. III.D), which are responsible
for capturing the motion patterns in spatial configuration
and temporal dynamics, respectively. Finally, we describe the
overall architecture of the network and its implementation
(Sec. [ILE).

A. Preliminaries

Spatial graph convolutional networks. A human skeleton
can be considered as a graph with joints as vertices and
bones as edges. The graph is denoted as G = (V, ), where
V = {v1,vq,...,0y} is the set of V vertices, and £ is the
set of edges defined by an adjacency matrix 4 € RV*V,
A; ; reflects the connection strength between v; and v;. The
neighborhood of v; is represented as N, = {v; | A;; # 0}.
After that, an action with 7' frames can be described by
a tensor X € RT*VXC or a set of node features X =
{#; R [,i €Z,1 <t <T,1<i<V}, where z;; =
Xy, is the C dimensional feature of v; at time ¢. Then, the
layer-wise update rule of GCNs can be formulated as

X =0 (A xw®) (1)

where o(+) is the activation function. We define 1=A +1 as
the adjacency matrix with self-loops. Then, A = D 2AD3 |
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and D is the diagonal degree matrix of A. Xt(l) is the input
of the l;;, layer with the weights W),

Temporal graph convolutional networks. As defined in
[5], temporal edges exist between the identical vertex in
consecutive frames. The neighborhood of vy; represented as
N7 (vi) = {vgillg —t |< [ I'/2]}, where I is the temporal
window size. The temporal edges can be interpreted as the
trajectories of the joints during time 7' intuitively[30]. The
classical implementation of temporal graph convolution can
be written as

XD = Conv 2D[I'x 1] (

V) @)

where I'x1 is the kernel size of 2D convolution. Typically,
the spatial-temporal convolutional network is built by stacking
these layers, i.e., alternately performing Eq. (1) and Eq. (2).

B. Part-based graph convolutional networks

Human actions are the co-movement of various body parts.
Intuitively, the skeleton graph can be constructed as a com-
bination of subgraphs with certain properties. Inspired by
existing part-based methods [8], [16], [20], [21], we derive
a general part-based spatio-temporal graph representation. Let
us consider that a graph G has been divided into P partitions. It
can be described as G = UZ},D Pp | Pp = (Vp,Ep), where P, is
the py;, part with vertices set V,, and edges set £,. Based on the
above definitions, a generalized part-based graph convolution
is as follows:

XD Fr (B (XP)) 1SS TSP ()

with
X0 = Foin (204), 1 <t <T,1<p<P1<i<|v,| (&)

where F7 is denoted as the temporal graph convolution. X7

is the feature vector of part p at time t. F,qy and Fjin 15 the
aggregation function for part-level and joint-level information,
respectively. We note that the existing methods all extract
action features hierarchically in a bottom-to-up manner, i.e.,
first aggregating low-level joint features and then aggregating
high-level part features to generate action representations.
These approaches hinder bidirectional information propagation
across levels, making it challenging to capture finer-grained
features and thus failing to discriminate analogical actions
involving the co-movement of identical joints or similar body
parts.

C. Fart-level Refined Spatial Graph Convolution

Because of this observation, we focus on iteratively cap-
turing refined dependencies between joints guided by high-
level body part semantics. Body parts can be considered the
smallest action execution unit because they lead to natural
constraints between joints, and the joints bound in the same
part usually have strong linkage and concurrency, e.g., the
leg binds the knee and ankle. In addition, the human body
is symmetrical exquisitely, and there are generally consis-
tent or opposite motion patterns between parts. Furthermore,
the patterns should be action-specific, e.g., our arms move

‘//h/ \\ /
[ ) ‘ ‘

[\ /

’ R " R ’

(a) up-down (b) middle-around  (c) left-right-middle

/ /

\ J/ /
}T:i’ Fea L IR Y an
i X 4 °

d) up-down-middle (e) five-parts (f) refined-parts

Fig. 3. Part division diagram. According to the composition and structure
of the human skeleton, we explore six different strategies for dividing parts.
Different colors highlight different parts. (a) The Up-down strategy divides
the skeleton into upper and lower parts, while (b) the middle-around divides it
into appendicular and axial skeletons. Further, (c) left-right-middle segments
the appendicular into left and right parts, and (d) up-down-middle splits the
appendicular into upper and lower parts. (e) Five-parts strategy consists of the
torso and limbs. (f) Refined-parts strategy separates the skeleton into eight
parts: the palms, arms, legs, head, and torso. Experiments in Sec. IV.C show
that the refined-parts strategy is better.

oppositely when walking, while when jumping, they always
show a consistent tendency. Thereupon, high-level body part
semantics are essential for low-level joint properties and fine-
grained action representations.

Part partition strategies. Based on the physical structure
of the human skeleton, we explore six different part partition
strategies as depicted in Fig. 3. In this work, we select
the refined-parts partitioning through extensive experiments
and analysis (Sec. IV.C). Specifically, the human skeleton is
categorized into eight parts: head, torso, left and right arms,
left and right hands, and left and right legs. Then, we utilize
joint-based representations to extend the feature of each body
part as follows.

Xgm = Concat ({CUJ | VS Vipan}) 3)

where V;”*"* denotes the set of joints contained in part .
zPort € RE*T s the feature of joint j. Cloncat represents
the cascade function. ;797 € REXT*Q where ( is the joints
number of part 7. On this basis, we can design the relation
modeling and mapping function to refine the interdependence
between joints, which allows for a more detailed understanding
of how the joints move together.

Relation modeling functions. We investigate two correla-
tion modeling functions M(-) to measure the dependencies
between parts. To reduce computation, we utilize linear trans-
formations ¢(-) and ¢(-) for compact feature representations.
M obtains the instantaneous uniform distribution of each
channel through the average pooling in the vertex dimension
and performs batch matrix multiplication to compute the dis-
tance. Then, the nonlinear transformations o (-) are conducted
to obtain part-level topology. Given part; and part; with
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Fig. 4. The topology optimization process. In SaPR-GCN, the raw skeleton is divided into eight parts and constructed as a part-level topology defined by the
part relation matrix according to relation modeling functions. After initialization and mapping, the adaptive joint adjacency matrix is derived and visualized
by the adaptive joints topology. The thicker the line, the higher the correlation. The color of the joint denotes its weight, and the color of the matrix represents
its element. Finally, the part-level refined adjacency matrix is obtained, which embeds body parts semantics gracefully.

corresponding features X7 and Xfart, the formula of their
relationship is as follows:

M. (i,§) = o (Poolia (¢ (XI")) ® Poolia (¢ (X5™")))  (6)

where Pooly; is an adaptive average pooling in the spatial
dimension. We use ® to denote matrix multiplication in the
temporal dimension. Before sending to M5, we employ two
linear transformations for computational efficiency. Different
from M, M obtains a compact spatio-temporal representa-
tion by global average pooling, and the correlation is measured
by the nonlinear transformations of distance. Formally:

Mso(i,j)=0o (POOlg,j ((,0 (Xf‘m)) — Poolayg (qb (Xj’"m))) @)

where Poolyy is the global average pooling. The proposed re-
lation modeling functions can dynamically reason the context-
dependent higher-level relations between body parts in a
bottom-to-up manner. Further analysis is presented in Sec.
IV.C.

Part-level refined topology. Taking the relation between
parts as the correlation between joints is not advisable since
the contribution of joints even within the same part toward
the action can differ. To solve this issue, we apply body
parts semantics to guide the low-level topology of joints and
design an up-to-bottom mapping function to substitute intra-
parts weight sharing. The optimization process is depicted
in Fig. 4. Particularly, the mapping function is defined as
f . Rpart _y Ajoint 7prart C RPwaAjoinr C RVXV which
guarantees intra-parts joint communication as well. The refined
topology A can be calculated as

Aij = [(M(p,q)) +b,i € VI j € VI ®

where b is the learnable position bias. Particularly, we first
initialize joint correlation, i.e., the refined topology, as part

relation, and then use 1 x 1 convolution to realize the learn-
able dynamic mapping. According to Eq. (8), the physical
connections between joints reflected by adjacency matrix A
are refined by the embedded part semantics allowing for the
weight that indicates connection strength radiating from parts
to joints.

Part-semantic guided graph convolution. Finally, the
graph convolution is advanced by leveraging the context-
dependent intrinsic topology under the guidance of part se-
mantics, and Eq. (1) is changed to

X" =0 (lag(A) + 1 —aMxPW?P) ©)

where M € RE*V*V is a learnable mask playing the role of
global shared topology. « is a learnable weight that controls
the contribution of the part refined topology A and M. We use
linear transformation £(-) for channel consistency and to obtain
the channel-wise dynamic topology. Through stacking PR-
SGC layers, we iteratively refine the topology of the human
skeleton and extract more discriminative spatial features, thus
polishing the performance on analogical action.

D. Scale-aware Temporal Graph Convolution

As spatial graph convolution is a local operation, it can
only utilize the spatial configurations between joints but fails
to model the temporal dynamics vital to action recognition.
For example, when recognizing actions putting on and taking
off shoes that involve similar interactions of parts, temporal
dynamic information is particularly crucial. Furthermore, fo-
cusing on multi-scale information for skeleton sequences can
effectively extract sufficient discriminative features, especially
for deficient actions with subtle movements or short durations.
Different from previous methods [10], [11] that extract multi-
scale features through predefined topological structures or
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Fig. 5. The architecture of proposed Sa-TGC that mimics the mechanism of the visual cortex. It deploys a multi-pathway design to capture multi-scale
temporal dynamics simultaneously. Stimulus shunting is responsible for sending input to branches for feature extraction. Each branch contains a shuffled
group convolution layer for the sake of channel communication and efficiency. Scale perception helps the model to reason the critical features according to
action context. Response delivery plays the role of feature selection, fusion, and transmission.

fixed-size convolution kernels, we propose a Sa-TGC for
adaptive multi-scale feature extraction and fusion. We employ
the bottleneck [22] structure with multiple branches to build
the scale-aware temporal modeling module. Specifically, it
can be divided into three stages, i.e., stimulus shunting, scale
perception, and response delivery, as illustrated in Fig. 5.

Stimulus shunting. To reduce computation cost, we utilize
the 1x1 convolution layer at both ends of Sa-TGC, which is
responsible for reducing and then restoring dimensions. After-
ward, the batch-normalized feature called stimuli is shunted
through a multi-branch structure. Unlike [11], [19], we use
convolution kernels with varying sizes in each branch to enrich
the receptive field instead of adjusting the dilation. We build
each branch using point-wise convolutions [23] and group
convolutions for low complexity and introduce the channel
shuffling operator to enable cross-channel communication and
capture contextual information outside the group region [24].
The shuffled multi-scale temporal convolution can be illus-
trated in Eq. (10).

F® (Xl) = Conv 2Dk x 1] (5 (X”))) (10)

where S(+) is the channel shuffle function and & is a factor that
controls the receptive fields of temporal convolution. Note that
the value of convolution parameter padding is constrained by
the shape invariance rule with variable k. The output of each
branch can be obtained by the following equation

1)

where U, € RE*T*V is the result of sy, branch. S is the
number of branches and controls the diversity of receptive
fields. k, is the kernel size of branch s.

Scale perception. Multi-scale analysis should be action-
specific since actions have diverse durations, such as “writ-
ing” and “sneeze”. To this end, the scale-aware mechanism
is designed to compute the importance of adaptive multi-
scale feature fusion, which simulates neurons’ excitation and
inhibition when perceiving various signals. We employ the

Us=FF)(X),1<s< S

addition operation to perform the prophase fusion of features
shunted from branches denoted as U € RE*T*V Then, the
global average pooling is adopted to squeeze spatial-temporal
information into a channel descriptor. The scale perception
process can be described as follows.

(12)

where Fp. is the sequence of fully connected layers with
reduction ratio r for dimension transformation and better
efficiency. We employ the softmax function to obtain a soft
attention vector Q € RS*C that describes the multi-scale
channel-wise importance, endowing the model with scale-
aware capabilities.

Response delivery. The response delivery phrase mainly
uses the above clues to adaptively fuse the information and
pass outputs considered as responses to the next layer. Instead
of concatenating the original results of branches, we perform
weighted aggregation of them guided by scale-aware matrix
Q to get final results U+ € REXT*V Mathematically,

S

U= U,®Q; (13)
where @, € RS*C is the channel-wise importance for feature
fusion. Due to the above efforts, Sa-TGC can adaptively
recalibrate multi-scale feature responses by explicitly mod-
eling inter-dependencies of branches and channels. With the
tricks of group convolution, channel shuffle, and scale-aware
mechanism, the fused features are more flexible and not
confined to the fixed receptive field of convolutional filters.
That is why Sa-TGC is competent for extracting discriminative
features of continuous and terminating actions.

Note that the proposed PR-SGC and Sa-TGC are compatible
with other graph convolutional networks, e.g., ST-GCN [5],
2S5-AGCN [3], MS-G3D [11]. By replacing the spatial or
temporal convolution block with PR-SGC and Sa-TGC, we
can achieve better performance, as depicted in Table IV.
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Fig. 6. The architecture of the proposed SaPR-GCN. The dotted arrow represents the residual connection. ® is batch matrix multiplication. & is element-wise
addition. (©) is concatenation operation. (a) The SaPR-GCN model that stacks ten basic STGC blocks for spatial-temporal modeling. The STGC block combines
PR-SGC (b) and Sa-TGC (c). The Sa-TGC is symmetric and consists of AMSTC (d) and TGC (e). After global average pooling, the features extracted by
the last STGC layer will be passed to the fully connected layer and softmax classifier. The dimension transformation of the input feature X has been marked.

C'in, is the input channel and Coq; is the output channel.

E. Network Architecture

The network structure of the proposed SaPR-GCN is pre-
sented in Fig. 6. It stacks ten basic STGC blocks for spatial-
temporal modeling as depicted in Fig. 6(a). Each block has
two modules that complement and cooperate in endowing
the network with both refined topology and scale awareness,
followed by a global average pooling and a softmax classifier
for action recognition.

Spatial modeling. We devise the PR-SGC module with
a shortcut connection for spatial modeling as illustrated in
Fig. 6(b). We divide each skeleton into eight body parts and
apply relational modeling functions to obtain the dependencies
between them. After the adaptive average pooling layer, the
cascaded parts are put into two 1x1 convolutional layers
with the same reduction rate r;. r; is equal to 16. The part-
level dependencies are permeated to the joint-level through
part-joint mapping. Then, we acquire the part-wise refined
adjacency matrix through a sequence of subtraction operation,
tanh activation function, position bias addition, and 1x1
convolution. We introduce a learnable mask as the global
shared topology and perform weight fusion with the normal-
ized adjacency matrix. Afterward, the graph convolution is
conducted according to Eq. (9). After the ReLU activation,
the spatial representation is obtained.

Temporal modeling. As shown in Fig. 6(c), the Sa-TGC
module employs a bottleneck structure followed by batch
normalization and activation layer. Unlike the original bot-
tleneck [22], we embed the AMSTC module between linear
transformations, enabling the model to select the optimal
receptive fields adaptively. As illustrated in Fig. 6(d), AMSTC
contains three branches, each consisting of a temporal group

convolution (TGC) block with different kernel sizes, 3, 7, and
11, respectively. At the beginning of TGC, we add a channel
shuffle operation in Fig. 6(e). The results of each branch are
added in the branch dimension by the unsqueeze operator
and then perform cascade and sum operations. The global
information embedding is obtained through an average pooling
layer, and then a fully connected layer with the reduction
of 7y is built for compact representation where ry = 2.
Then the results pass through different linear transformations,
respectively. Afterword, a concatenation, softmax activation
function, and unsqueeze operator are conducted sequentially
for channel importance. Finally, the recalibrated multi-scale
feature is obtained by weighted aggregating according to
learned attention vectors.

Multi-stream fusion. Multi-stream fusion framework is
widely utilized in [19], [25], [26]. Inspired by this, we adopt
a four-stream framework where a separate model with iden-
tical architecture is trained using four input streams. They
are the raw coordinates of joints, called “joint stream”; the
difference between first-order adjacent joints, called “bone
stream’; the difference of the above two streams between
adjacent frames, called “joint motion stream” and “bone
motion stream”, respectively. Each model captures stream-
specific motion patterns through stacked spatio-temporal graph
convolutional layers. Finally, the softmax scores of multiple
streams are ensembled as the final decision.

IV. EXPERIMENTS

To demonstrate the advantages of SaPR-GCN, we compare
our model with mainstream baselines on three public datasets
and conduct ablation studies to analyze the components and
parameter selections.
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TABLE I
THE RESULTS OF PARTITION STRATEGIES
ID Strategy Part number | Para.(M) | Acc.(%)
(a) up-down 2 1.80 90.30
(b) middle-around 2 1.80 90.17
(c) | left-right-middle 3 1.87 90.25
(d) | up-down-middle 3 1.87 90.27
(e) five-part 5 2.02 90.20
(f) refined-part 8 2.07 90.43

! Bach srategy is illustrated in Fig. 3 corresponding to its ID.

A. Datasets

NTU RGB+D 60. NTU RGB+D 60 [27] contains 56,880
action samples categorized into 60 classes. The actions are
conducted by 40 volunteers. The skeleton sequences are cap-
tured by three Microsoft Kinect v2 cameras from three views.
There are two popular benchmarks: (1) cross-subject (X-sub):
training data comes from half of the subjects and testing data
comes from the other. (2) cross-view (X-view): training set
comes from camera IDs 2 and 3, and the testing set comes
from camera ID 1.

NTU RGB+D 120. NTU RGB+D 120 [28] is an extension
of NTU RGB+D 60, which has 120 action classes and 114,480
samples. The samples are collected in various locations and
backgrounds denoted as 32 setups. In addition to the original
cross-subject (X-sub), the cross-setup (X-set) evaluation is
introduced, where the training set comes from samples with
odd setup IDs, and the testing set comes from the rest.

NW-UCLA. NW-UCLA [29] is a multi-view dataset cap-
tured by three Kinect cameras at the same time. It contains
1494 video clips and covers 10 action labels. Each action
is performed by 10 subjects. We follow the same evaluation
protocol in [25]: the samples captured by the first two cameras
are grouped as a training set, and the residual makes a testing
set.

B. Implementation Details

All experiments are conducted on two RTX 3090 GPUs with
the PyTorch deep learning framework. Our models are trained
for 60 epochs by stochastic gradient descent (SGD) with a
momentum of 0.9. We apply a warmup strategy in the first 5
epochs for training stability. The weight decay is 0.0004. For
NTU RGB+D and NTU RGB+D 120, the batch size is 64,
and we set the learning rate to 0.1 divided by 10 at epoch 40
and 50. For NW-UCLA, we set the batch size to 32, and the
learning rate is ten times smaller at epoch 50. We adopt the
data pre-processing following [19] on these datasets.

C. Ablation Studies

In this subsection, we examine the effect of the proposed
components of SaPR-GCN. For fairness and brevity, all the ab-
lation experiments are conducted on NTU RGB+D 60 dataset
with the X-sub setup, and we only use bone stream as the input
for all benchmarks. We discuss from two perspectives: one is
the parameters selection, and the other is the comparison with
alternative components.

TABLE II
THE RESULTS OF TOPOLOGY REFINING MODULE
Model M Mask | r1 | Acc.(%) Para. FLOPs
ST-GCN* X 81.07 3.08M | 3.49G
ST-GCN* v 82.32 3.08M | 3.49G
2s-AGCN* v 87.21 3.45M | 3.99G
SaPR-GCN | M; X 16 84.27 2.07M 1.68G
SaPR-GCN | My X 16 89.57 2.07M 1.65G
SaPR-GCN | M; v 16 88.52 2.07M 1.68G
SaPR-GCN | M, v 16 90.43 2.07M 1.65G
SaPR-GCN | M, v 2 89.59 6.51IM | 2.02G
SaPR-GCN | M, v 8 89.79 2.71IM 1.07G

! Those marked with * are methods we reproduced.

Part partition strategies. Firstly, we discuss six partition
strategies that refine the joint dependence and affect the feature
aggregating process in SGC. The results of such methods are
shown in Table I. The refined-part strategy, which divides
the human body into eight parts, achieves optimal results.
We find that more body parts do not always indicate better
performance. As depicted in Table I, the Up-Down approach
surpasses the five-part strategy and outperforms the middle-
around method, which also separates the body into two parts.
Moreover, the more parts reflect, the more parameters. Over-
all, it is essential for GCNs to employ appropriate partition
strategies and embed part semantics for the refined skeleton
structure.

Part-level refined topology module. Analogical actions
tend to have similar parts interactions. Therefore, we refine
the topology by introducing body parts and action semantics
to capture higher-level motion patterns. The topology refining
module is mainly affected by three factors: (1) The correla-
tion modeling function M which determines the evaluation
criteria for part-level dependencies. (2) The global shared
topology (Mask) is complementary to the correlation mod-
eling function to generate potential edges. (3) The feature
reduction rate r; that controls the complexity of the model.
As shown in Table II, the accuracy of Ms is higher than
M regardless of whether the mask is added or not, and it
has lower computational complexity when r; is the same.
Besides, the mask brings a gain of 4.25% and 0.86% to M1
and M , respectively. It can be concluded that the global

TABLE III
THE RESULTS OF SCALE-AWARE MECHANISM
Model S(K) G [ S| Ra | Acc.(%)
ST-GCN* 82.32
2s-AGCN* 87.21
2s-AGCN 3(1, 3,5) 8 v 2 89.68
SaPR-GCN | 3(1, 3,5) 8 v 16 89.05
SaPR-GCN | 3(7, 9, 11) 8 v 2 89.80
SaPR-GCN | 3(1, 5,9) 8 v 2 90.02
SaPR-GCN | 3(3, 7, 11) 8 v 2 90.43
SaPR-GCN | 3(3, 7, 11) 8 X 2 90.17
SaPR-GCN | 4(3,5,7,9) 8 v 2 89.84
SaPR-GCN | 5@3,5,7,9, 11) 8 v 2 90.28
SaPR-GCN | 3(3, 7, 11) 1 v 2 90.12
SaPR-GCN | 3(3, 7, 11) 16 | v 2 89.96
SaPR-GCN | 3(3, 7, 11) 32 | v 2 90.05

! Those marked with * are methods we reproduced.
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TABLE IV
THE COMPARATIONS OF VARIOUS COMPONENTS
Model | Components Acc.(%)
A AGCN* (ASGC w/ TC) 87.21
B AGCN* (ASGC w/ Sa-TGC) 90.13
C 2s-AAGCN*(AAGC w/ TC) 86.02
D 2s-AAGCN* (AAGC w/ Sa-TGC) 88.15
E MS-G3D*(MS-GC w/ MS-TC) 88.64
F MS-G3D* (MS-GC w/ Sa-TGC) 90.06
G 2s-AGCN* (PR-SGC w/ TC) 89.67
H MS-G3D * (PR-SGC w/ MS-TC) 90.02
1 SaPR-GCN1(PR-SGC w/ Sa-TGC w/o S) 90.17
J SaPR-GCN2(PR-SGC w/ Sa-TGC) 90.43
! Those marked with * are methods we reproduced.
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Fig. 7. The analysis of components. A-J corresponds to the models in Table
III. We use circles of different sizes to indicate the amount of parameter (M),
and the specific values are marked on them. The darker the circle, the smaller
the value of FLOPs (G). The arrows indicate the gains achieved by replacing
the corresponding components.

shared topology is essential for capturing the dependencies
between joints, especially for weaker models. Experiments on
ST-GCN [5] also verify this claim. In addition, we observe
that r; greatly influences the model complexity and causes
minor accuracy fluctuations. The performance is the best
when r; = 16. Compared to ST-GCN [5] and 2s-AGCN
[3] methods without utilizing parts semantics, our model
achieves 8.11% and 1.97% improvement with less than 50%
complexity, respectively. The experimental results demonstrate
that the part-level refined topology module can effectively
learn the intrinsic dependencies between joints, thus improving
the overall accuracy.

Scale-aware mechanism. Scale-aware mechanism endows
the model with dynamic multi-scale analysis for multi-range
actions, which are mainly constrained by the following factors:
(1) The number of branches and the convolution kernel size
of each branch S(K). S determines the scale diversity of the
model, and K determines the granularity of multi-scale fused
representations. (2) Temporal convolution. The parameters of
temporal convolution include the number of groups (G) and
the channel shuffling operation. G is a vital factor affecting
the complexity of the model, and S is introduced for the
communication between groups. (3) Reduction rate r5 controls
the squeezed rate of feature channels. We first briefly evaluate
the parameter settings of ry. The results are reported in
Table III. We find that a lower compression rate can improve

TABLE V

COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON THE
NW-UCLA DATASET. WE REPORT THE ENSEMBLED STREAMS, TOP-1

ACCURACY (%), FLOPS(G) AND PARAMETERS(M).

Methods Publication | S | Acc. | FLOPs Para.
HBRNN-L [21] CVPR’15 1] 785 - -
TS-LSTM [30] ICCV’17 4 | 89.2 - -
AGC-LSTM [31] CVPR’19 2 | 933 - -
Shift-GCN [32] CVPR’20 4 | 94.6 0.70* 1.28*
DC-GCN+ADG [33] ECCV’20 4 |1 953 3.56* 9.84*
Shift GCN++ [25] TIP 21 4 1 950 0.11%* 0.44%*
CTR-GCN [19] ICCV’21 4 1 96.5 2.32% 5.68*
RGCA [34] ICME’21 1 85.3 - -
Graph2Net [6] TCSVT’22 | 2 | 953 0.64%* 1.62*
FGCN [35] TIP 22 2 | 953 - -
Ta-CNN [4] AAAT22 2 | 96.1 0.16 1.06
Ta-CNN+ [4] AAAT22 2 | 972 0.32 2.12
GAP [36] ICCV’23 41 972 - -
SaPR-GCN (ours) - 4 1 96.6 1.31 2.06

1S is the number of ensembled streams.
2 Those marked with * are the results we reproduced.

performance at an acceptable parameter cost. Therefore, we
set o equal to 2. Next, we explore the impact of kernel
sizes. The results show that the larger the difference between
convolution kernel sizes of multiple branches, the better the
model’s performance. The accuracy is optimal when S(K) =
3(3, 7, 11). It is worth noting that increasing the number of
branches can improve the accuracy but expand the complexity
of the model. The five-branch model is only 0.2% better
than the four-branch model. Thus, S and K are significant
parameters worth tuning. Experiments show that using group
convolutions can reduce the complexity but note that not
the more groups, the better. After weighing, we set G to 8.
We also study the effect of channel shuffling operations, and
experiments show that it can raise the accuracy by 2.6% with-
out additional parameters and FLOPs. The models combined
with the scale-aware mechanism all outperform baselines, and
the accuracy can be improved by at least 6.73% compared
with ST-GCN [5]. Furthermore, the complexity of SaPR-GCN
is also competitive. The above experiments demonstrate the
effectiveness of the scale-aware mechanism, indicating that
adaptive multi-scale feature fusion can significantly improve
model performance.

PR-SGC & Sa-TGC vs. other components. We select the
components AGC, AAGC, and TC modules in 2s-AGCN [3],
and multi-scale MS-GC, MS-TC modules in MS-G3D [11] and
then replace them with our proposed PR-SGC and Sa-TGC to
generate variants, as shown in Table IV. We default to apply
the optimal experimental settings described in Sec. IV.C. It can
be seen that the PR-SGC embedded in the part-level refined
module outperforms the SGC, AGC, and AAGC that only con-
sider physical connections and importance masks. Moreover,
the Sa-TGC with the scale-aware mechanism is more optimal
than TC and MS-TC. Fig. 7 intuitively illustrates our findings.
According to the results above, SaPR-GCN outperforms other
derived models, demonstrating the superiority of PR-SGC and
Sa-TGC.
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TABLE VI
COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON THE NTU RGB+D 60 & 120 DATASET. WE REPORT THE ENSEMBLED STREAMS, TOP-1(%)
ACCURACY, FLOPS AND PARAMETERS.

NTU

RGB+D 60 | NTU RGB+D 120

Methods Publication Stream <06 Xview Xsub Xoset FLOPs Para.
ST-GCN [5] AAAT'18 1 81.5 88.3 70.7 73.2 16.32G* 3.10M*
PB-GCN [16] BMVC’18 1 87.5 93.2 - - - -
AS-GCN [14] CVPR’19 1 86.8 94.2 77.9 78.5 26.76G* 9.50M*
2s-AGCN [3] CVPR’19 2 88.5 95.1 82.9 84.9 37.32G* 6.94M*
NAS-GCN [9] AAAT’ 20 2 89.4 95.7 - - 72.30G* 13.00M*
PL-GCN [8] AAAT 20 1 89.2 95.2 - - - 20.70M
SGN [37] CVPR’20 1 89.0 94.5 79.2 81.5 27.46G* 0.69M
PA-ResGCN-B19 [17] ACM MM’20 1 90.9 96.0 87.3 88.3 18.52G 3.64M
Shift-GCN [32] CVPR’20 4 89.7 96.0 85.9 87.6 10.00G 2.76M
MS-G3D [11] CVPR’20 2 91.5 96.2 86.9 88.4 48.88G* 6.44M*
DDGCN [38] ECCV’20 1 91.1 97.1 - - - -
Dynamic GCN [26] ACM MM’20 4 91.5 96.0 87.3 88.6 7.96G 14.40M
SEFN [18] TCSVT’ 21 2 90.7 96.4 86.2 87.8 152.30G 34.70M
Js-CTR-GCN* [19] ICCV’21 1 90.1 94.6 84.9 87.0 1.97G* 1.46M*
RA-GCN [13] TCSVT’ 21 3 87.3 93.6 81.1 82.7 32.80G 6.21M
MST-GCN [10] AAAT21 4 91.5 96.6 87.5 88.8 26.60G* | 11.68M*
Shift GCN++ [25] TIP’21 4 90.5 96.3 85.6 87.2 1.70G 1.80M
KA-AGTN [39] KBS’22 2 90.4 96.1 86.1 88.0 - 5.4M
FGCN [35] TIP’22 2 90.2 96.3 85.4 87.4 - -
Graph2Net [6] TCSVT’ 22 2 90.1 96.0 86.0 87.6 9.90G* 1.64M*
AimCLR [40] AAAT22 3 86.9 92.8 80.1 80.9 1.71G* 2.46M*
Ta-CNN [4] AAAT22 2 90.4 94.8 85.4 86.8 0.16G 1.06M
Ta-CNN+ [4] AAAT22 2 90.7 95.1 85.7 87.3 0.32G 2.12M
SMotif-GCN+TBs [41] TPAMI’22 1 90.5 96.1 87.1 87.7 - -
MS&TA-HGCN-FC [7] TCSVT 23 2 90.8 96.4 87.0 88.4 - -
EfficientGCN(B4) [42] TPAMI’23 1 92.1 96.1 88.3 89.1 8.36G 1.10M
ActCLR [43] CVPR’23 3 88.2 93.9 82.1 84.6 1.71G* 2.52M*
HiCLR [44] AAAT’23 3 90.4 95.7 85.6 87.5 3.54G* 4.68M*
SkeAttnCLR [45] 1JCAI'23 3 89.4 94.5 83.4 92.7 10.44G* 9.24M*
GAP [36] ICCV’23 4 92.9 97.0 89.9 91.1 - -
RVTCLR+ [46] ICCV’23 3 87.5 93.9 82.0 83.4 3.33G* 2.46M*
Js-SaPR-GCN (ours) - 1 90.1 94.9 85.4 87.0 1.65G 2.07TM
SaPR-GCN (ours) - 4 92.4 96.4 88.7 90.3 6.60G 8.28M

! Those marked with * are the results from the corresponding methods we reproduced.

D. Comparison with the State-of-the-Art methods

We adopt the multi-stream fusion framework as [19], [25],
[26], including four modalities, i.e., joint, bone, joint motion,
and bone motion. We compare our model with the state-of-
the-art methods on the NW-UCLA, NTU RGB+D 60, and
NTU RGB+D 120 dataset, and the corresponding results are
reported in Table V and Table VI. Js refers to the raw data, and
Bs refers to the bone data. 2-stream(2s) denotes the ensemble
of joint and bone, and 4-stream(4s) denotes the fusion of
all streams in Sec. IILLE. SaPR-GCN adopts the 4-stream
ensemble schema by default. On the NW-UCLA dataset,
SaPR-GCN is superior to most of the state-of-the-art models,
especially those without graph convolutions (e.g., HBRNN-L
[21] and TS-LSTM [30]). While the result is slightly lower
than Ta-CNN+ [4], SaPR-GCN surpasses it in the other two
datasets even without the extra data augment trick as shown
in Table VI. For the NTU RGB+D 60 & 120 datasets, SaPR-
GCN achieves more competitive performance than mainstream
approaches, especially compared with part-based approaches
[8], [16], [17], [46]. Although our accuracy was slightly lower
in the X-view experimental setting than that in DDGCN [38],
our accuracy was 1.3% higher in the X-sub setting. Compared
to SkeAttnCLR [45], SaPR-GCN outperforms it in all but the
X-set setting, with up to 5.3% over the x-sub protocol for

the NTU RGB+D 120 dataset. Unfortunately, our approach
still has certain limitations and is slightly inferior to GAP
[36], which applies the large generative model GPT-3 offline
action description generation. We believe it is meaningful
to introduce large models to action recognition tasks and
investigate foundation models. Last but not least, SaPR-GCN
is energy-saving for storage and computation. This advantage
is more noticeable compared to other GCN-based methods
from the perspective of FLOPs. Overall, the results above
demonstrate the superiority of our method SaPR-GCN.

V. DISCUSSION

We discuss the proposed blocks PR-SGC and Sa-TGC to
further illustrate the interpretability [47] of SaPR-GCN and
analyze its performance on analogical and deficient actions.
All analyses are based on the model trained with the joint
stream on NTU RGB+D 60 in X-sub setting as default.

A. Part activation maps and refined topology

To be more intuitive, we illustrate the interpretability of
SaPR-GCN by showing the attention of SaPR-GCN through
part activation maps which is the visualization of part atten-
tion. We take drinking water as an example, as depicted in
Fig .8. The first row is the corresponding skeleton sequence of
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Fig. 8. Part activation maps and refined topology of drinking water. The first
line shows the sampled skeleton sequence of “drink water”. The second line
is the part activation map obtained by accumulating activation joints in each
part. The activation joints labeled in solid red circles are derived by CAM.
The deeper the color, the higher the activation degree. The third line is the
intrinsic connections to other joints of the left-hand tip (>0.04).

drinking water (mirrored). We can see that the right-hand part
is the vital part of “drink water”, which is more discriminative
for identifying the action. The second line is the part activation
map obtained by accumulating activation joints in each part.
We leverage class activation mapping [20] to acquire activation
joints. In order to picture the activated parts more clearly, we
show the frontal human skeleton to avoid overlapping joints,
as presented in the second row. We observe that the shallow
network tends to capture the features of each part uniformly.
In the third layer of the network, the model shifts its attention
to the upper body and focuses on head changes. As the number
of layers continues to increase, the model pays more attention
to the movement of the hand. Moreover, it is worth noting
that the last layer can clearly distinguish the importance of
the left and right hands, which indicates that our model has
good interpretability and can capture the most critical hand
according to the action semantics. In addition, we analyze the
topology after part refinement. We select the right-hand tip
from the activation parts as the analysis object. The third row
of Fig. 8 shows its intrinsic connections to other joints. We
only show edges with weights above the threshold of 0.04. The
thickness of the lines indicates the strength of connectivity. For
the action of drinking water, we find that the model can pay
more attention to the relationship between the left hand and
the upper body, which is in line with human cognition. We
analyze the topology of various actions and conclude that the
information transfer between joints is asymmetric. The self-
connection is weakened by the attention mechanism, which
coincides with [11]. Additionally, we observe that shallow
layers tend to capture close-range neighbors. In contrast, deep
layers can expand the radiation range of joints, which explains
the phenomenon that the deeper the network is, the higher
the recognition accuracy. It can be seen that our model can
focus on the most active parts and extract more discriminative

typeona

keyboard fall down

reading

sneeze/cough

Fig. 9. Scale attention map of different actions. The scale attention map can
reflect the concerned scale in specific layers. We show the results of two
continuous actions “type on a keyboard” and “reading” and two terminating
actions “sneeze/cough” and “fall down”. k is the kernel size of the temporal
convolution in each branch.

features through the refined topology, thereby improving the
performance of the model.

B. Context-dependent multi-scale feature extractor

To illustrate that our proposed multi-scale temporal convo-
lution module Sa-TGC can dynamically adjust the weights of
each branch according to the behavior context, we visualize
the branch importance vectors inferred by the model as scale
attention maps, as shown in Fig. 9. We can see that each action
has its unique attention map. Moreover, each layer has unequal
scale weights for a specific action. The inferred scale attention
map is diverse, even for similar actions such as typing on a
keyboard and reading. In addition, we find that Sa-TGC tends
to use larger convolution kernels for continuous actions with
subtle changes, such as typing on a keyboard and reading.
In contrast, for the terminating actions of sneezing/coughing
and falling down, Sa-TGC prefers to use a smaller convolution
kernel. The above analyses indicate that the model has adaptive
scale awareness, and different layers exhibit different scale
diversity, especially the last five layers. It is the fundamental
reason for the higher accuracy of SaPR-GCN on deficient
actions.

C. Performance on analogical and deficient actions

Existing methods still have challenges recognizing analogi-
cal and deficient actions. Specifically, analogical actions can be
further classified as (1) actions involving interactions between
the same parts, e.g., “drink water” and “eat a meal” (2)
actions covering interactions between similar parts, e.g., “neck
pain” and “headache”, “sneeze/cough” and “nausea/vomiting”
(3) actions with reverse temporal dynamics, e.g., “put on a
shoe” and “take off the shoe”. In addition, deficient actions
can be summarized as (1) continuous action with subtle
movements, e.g., “reading”, “writing” and “play with phone”.
(2) terminating actions with short durations, e.g., “sneeze”,
“nausea”. We further compare the performance of SaPR-GCN
and its variants on specific actions. We select twelve categories
of actions from the NTU RGB+D 60 dataset and further divide

them into six pairs according to the characteristics of actions,
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Fig. 10. The effectiveness of PR-SGC and Sa-TGC module in recognizing
analogical and deficient actions. We select twelve analogical and deficient
actions as test samples and divide them into six pairs marked in dotted
rectangles. The figure mirrors the results of 2s-AGCN and our method, i.e.,
SaPR-GCN and its variants.

as shown in Fig. 10. For clarity, we have added double-headed
arrows as auxiliary lines to the boundaries of the baseline
method. It can be seen that SaPR-GCN outperforms the other
two variants and outperforms the baseline method marked by
blue triangles. This further demonstrates the effectiveness of
the proposed modules PR-SGC and Sa-TGC.

Moreover, we compare SaPR-GCN with other approaches,
including AS-GCN [14], AGCN [3], CTR-GCN [19], MS-
G3D [11], and Ta-CNN [4]. We reproduce the above methods
on the NTU RGB+D 60 dataset under the X-sub setting and
show the average recognition accuracy for specific actions in
Figure 11. Since Ta-CNN [4] only uses joint data, we train
these models by the joint data for fairness. It can be seen
that our method is superior to the existing methods on the
whole. It is worth noting that compared with AS-GCN [14],
which introduces the global action semantic structure, our part-
level refined topology has apparent advantages in recognizing
subtle actions such as writing and reading, bringing up to 15%
accuracy gain. The possible reason is that these actions are
coupled with two hands, which asks the model to capture
more fine-grained dynamics of hands. Besides, our method
is more robust than MS-G3D [11] and CTR-GCN [19],
which employ static multi-scale mechanisms. In summary, our
method achieves superior performance by embedding part se-
mantics and exploiting adaptive multi-scale analysis. However,
the average recognition accuracy of the above methods for
recognizing challenging samples is lower than 90%. In future
work, we will strive to improve the accuracy of analogical and
deficient actions and other challenging samples.

VI. CONCLUSION

In this work, we propose a practical learning framework
SaPR-GCN for skeleton-based human action recognition. We

drink water
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one
—— SaPR-GCN
— AGCN
AS-GCN
—— CTR-GCN
type.on take 6ff
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Fig. 11. Comparison with competitive methods on analogical and deficient
actions. The above methods are trained by the joint data in NTU-RGB+D
60 dataset on the X-sub setting. Different colored lines indicate the accuracy
of different methods. Among them, the red-filled polygon area is the largest,
which proves that our method is more advantageous in identifying analogical
and deficient actions.

introduce two portable modules, PR-SGC and Sa-TGC, to
obtain an effective spatial-temporal motion representation, es-
pecially for analogical and deficient actions. Specifically, PR-
SGC embeds body parts semantics to refine topology, and Sa-
TGC leverages scale perception mechanism to acquire context-
dependent multi-scale features adaptively. Taking advantage
of these modules, SaPR-GCN can dynamically extract more
discriminative features and thus achieve superior performance
on three public datasets. We will focus on fine-grained actions
with subtle hand movements in future work.
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